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COMMENTARY

Shock-and-kill versus block-and-lock: Targeting the
fluctuating and heterogeneous HIV-1
gene expression
Yang-Hui Jimmy Yeha and Ya-Chi Hoa,1

Despite effective antiretroviral therapy, HIV-1 persis-
tence in the latent reservoir remains the major barrier to
cure. Current strategies for HIV-1 eradication require either
inducing HIV-1 expression to expose latently infected cells
for immune clearance [known as the “shock-and-kill strat-
egy” (1)] or silencing HIV-1 expression for a prolonged
drug-free remission [knownas the “block-and-lock strategy”
(2)]. Extensive small-molecule compound library screens
have identified drugs that can reactivate HIV-1 from latency
[known as latency-reversing agents (LRAs) (1)] as well as
drugs that can reduce HIV-1 expression [known as HIV-1−
suppressing agents (3) or latency-promoting agents (LPAs)
(4)]. However, none of these agents have reached a durable
HIV-1 remission in clinical trials, suggesting that more drug
candidates should be identified and tested. Lu et al. (5)
performed a drug screen to identify compounds that can
modulate the fluctuations of HIV-1 gene expression.

Gene expression does not always follow deterministic
kinetics like an on/off switch: Instead, gene expression
levels frequently fluctuate (“noise”), creating stochastic
variations in cell fate determination (6). For example, if
HIV-1 gene expression is deterministic, maximum T cell
activation should be able to reactivate all HIV-1 proviruses
from latency. However, ex vivo studies showed that each
round of maximum T cell activation can only reactivate a
subset of HIV-1 expression (7). This is because HIV-1 gene
expression level is determined by the stochastic fluctua-
tion of Tat expression (8). The fluctuation and stochastic
nature of HIV-1 gene expression creates a barrier for ef-
fective HIV-1 eradication strategies. Therefore, identifica-
tion of drugs that can modulate the fluctuations of HIV-1
gene expression (or “noise”) may presumably increase the
efficiency of HIV-1 latency reversal or silencing.

Capturing the Dynamic and Fluctuating HIV-1
Gene Expression at the Single-Cell Level
Typical drug screens for LRAs or LPAs measure the
steady-state expression level of HIV-1−driven fluo-
rescent reporter (such as green fluorescent protein

[GFP] or luciferase) at a single time point in bulk. Such
methods cannot capture the dynamic changes of
gene expression fluctuations and the heterogeneity in
individual cells. Weinberger et al. (8) first developed a
fluorescent imaging platform to track the fluctuation
and heterogeneity of HIV-1−GFP reporter expression
in individual cells over time. Later, Dar et al. (9) further
measured the amplitude of HIV-1 gene expression
fluctuations (coefficient of variation [CV]) and the du-
ration of HIV-1 gene expression (time) to quantify the
level of HIV-1 gene expression fluctuations in individual
cells. Using this platform for a drug screen, Dar et al. (9)
identified drugs that can change the fluctuations of HIV-1
gene expression as noise-modulating agents, including
noise enhancers and noise suppressors.

In PNAS, the Dar group refine this noise-measuring
method to identify drugs that can suppress HIV-1 ex-
pression upon T cell activation by tumor necrosis
factor (TNF) (5) (Fig. 1A). The major advance of this
study is to use automated time-lapse fluorescent mi-
croscopy to capture not only HIV-1 expression level
(fluorescent intensity) but also noise magnitude
(HF-CV2) and the duration of gene expression fluctu-
ation (τ1/2). While the previous drug screen identified
only one compound (manidipine) as a noise suppres-
sor (9), Lu et al. (5) identify three noise modulators that
can suppress HIV-1 expression when challenged with
different LRAs, such as TNF, protein kinase C (PKC)
activator prostratin, and phorbol myristate acetate
(another potent PKC activator) and ionomycin (a cal-
cium ionophore). The authors find that two of the
three compounds structurally resemble pleurotine, a
thioredoxin reductase (TrxR) inhibitor. Using these two
lead compounds (NSC401005 and NSC400938), the
authors identify two additional Trx/TrxR pathway in-
hibitors, PX12 and tiopronin that can suppress HIV-1
expression. Although the mechanism of TrxR on HIV-1
is not yet fully understood, two previous studies sug-
gest that thioredoxin may regulate the disulfide bond
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binding of Tat (10) orNF-κB (11). It remains unclear whether these drugs
can indeed promote HIV-1 latency at the epigenetic level or serve
merely as a Tat inhibitor at the RNA transcription elongation level.

Understanding the Control of HIV-1 Gene Expression Is a
Key to a Cure
Drug screens not only identify candidate therapeutic targets but
also serve as probes to identify pathways that are critical for HIV-1
gene expression, latency, and reactivation. While T cell activation

remains the most effective way to reactivate HIV-1, the systemic
side effect and potential of increasing the proliferation of HIV-1−
infected cells make global T cell activation not feasible for clinical
use. Drug screens on HIV-1 latency reversal identified multiple
viral and cellular pathways: HIV-1 can be reactivated by 1) in-
creasing Tat-dependent transcriptional elongation by inhibiting
BRD4 interaction with the positive transcription elongation factor
b (P-TEFb) [such as JQ1 (12)], 2) removing epigenetic silencing by
histone deacetylation inhibitors [such as vorinostat (13),
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Fig. 1. Identification of cellular targets for LRAs versus LPAs. (A) Measuring the fluctuating and heterogeneous HIV-1 gene expression by automated
time-lapse fluorescent microscopy. In individual culture wells, HIV-1–driven, Tat-dependent GFP expression is captured by tracking the GFP signal
intensity over time, allowing the measurement of HIV-1 expression level (intensity), fluctuations (noise) in HIV-1−GFP expression, and the duration of
HIV-1 expression (time). As opposed to measuring the static level of HIV-1 expression, this approach quantifies the trajectory of the fluctuating HIV-1
gene expression over time at the single-cell level. (B) Shock-and-kill versus block-and-lock strategies: Drug screens for LRAs (magenta) versus LPAs (blue)
identified molecular mechanisms and therapeutic targets that are important for HIV-1 expression. ROS, reactive oxygen species.
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panobinostat (14), and romidepsin (15)], 3) direct or indirect acti-
vation of NF-κB through Toll-like receptor (TLR) activation [such as
TLR1/2 agonist Pam3CSK4 (16) and TLR7 agonist GS-9620 (17)],
PKC activation [such as bryostatin (18) and ingenol (19)], or non-
canonical NF-κB activation [such as SMAC mimetics (20, 21)], 4)
activation by common γ-chain receptor cytokines [such as IL-15
agonist (22)] and JAK/STAT pathways such as STAT5 SUMOyla-
tion inhibitor [such as benzotriazoles (23)], and 5) other cellular
pathways such as reactive oxidative stress inducer [such as juglone
(24)] (Fig. 1B). Similarly, drug screens on HIV-1−suppressing
agents also identified viral and cellular pathways as therapeutic
targets: HIV-1 reactivation can be suppressed by 1) inhibition of
Tat-dependent transcription by Tat inhibitor [such as didehydro-
cortistatin A (dCA) (2)], CDK9 inhibitor [such as flavopiridol (3)],
and DNA helicase transcription factor IIH inhibitor [such as spi-
ronolactone (3, 25)], 2) inhibition of NF-κB activation by mTOR
inhibitor [such as rapamycin (26)] and Akt inhibitor [such as
uprosertib (3)], 3) inhibition of JAK/STAT pathways by JAK

inhibitors [such as filgotinib (3) and ruxolitinib (3, 27)], or 4) other
cellular pathways such as calcium sensitizer levosimendan (3, 4),
nucleotide synthesis inhibitor [such as mycophenolic acid and
MMF (3)], and RNA splicing inhibitor [such as filgotinib (3)].
Ideally, the platform that Lu et al. (5) developed can be applied
to different reporter systems and may potentially identify gene
expression noise modulators involving these cellular pathways
to fine-tune both the shock-and-kill and the block-and-lock
strategies.
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